ERCP: Pancreatobiliary tree without the surgeon

Kamran Ayub, MD, MRCP
Visiting Clinical Associate Professor, UIC
Silver Cross Hospital
Advocate Christ Medical Center
Provena St Joseph Medical Center
Little Company of Mary Hospital
Advocate Good Samaritan Hospital

Disclosures

• No conflict of interest for this presentation
• This conference supported by an independent educational grant from Cook Medical
• No political affiliations

ERCP and Advanced Endoscopy: Team Effort

• Strong team required for successful program:
 • Endoscopist, and well trained:
 – Nurses
 – Technicians
 – Cytopathologist
ERCP
Endoscopic Retrograde Cholangio Pancreatography

Bile is secreted by the liver and stored in the gallbladder

Liver
Gallbladder
Common bile duct
Major duodenal papilla
Estimated Procedural Volume - 2004

- United States - 445,000 cases per year
- Worldwide - 1.3-1.5 million cases per year

Sources: Timely Data Resources
PSPSF – Medicare claims Solutions
ERCP’s – United States 2004

- Diagnostic ERCP’s - 69,000
 - Decreasing ~ 4% per year
- Therapeutic ERCP’s - 376,000
 - Increasing ~ 12% per year

ERCP

- Historical contraindications
 - Pancreatitis
 - Cholangitis

ERCP-Current Indications

- Biliary Tract:
 - Choledocholithiasis
 - Benign obstruction
 - Malignant obstruction
 - Complications of laparoscopic cholecystectomy
ERCP-Current Indications

- Pancreatic disease
 - Acute pancreatitis with complications
 - Evaluation and management of recurrent pancreatitis
 - Chronic pancreatitis with complications

- Evaluation of imaging abnormalities - e.g. MRCP, CT, EUS
- Evaluation of abdominal pain ? SOD
- Excision of ampullary tumors

Case from Seattle

- 68 y/o MSM with h/o CAD, HTN, Diabetes, CRI presents with ~ 6 month upper abdominal pain, deep seated, vague, 3-5/10. Two attacks of mild pancreatitis.
- MRI scan: 3 cm mass ampullary region, 1.4 cm area of signal abnormality in HOP. Normal CBD and PD.
Case

- P/Hx:
 - CAD: CABG in '96
 - IDDM
 - HTN
 - CRI, creatinine around 2.2
 - Obesity

Physical Exam

- VSS
- Obese, ht 5.6", wt 235 lbs
- Otherwise unremarkable

Laboratory

- Hct 30
- Cr 2.2
- LFT’s Normal
- CA 19-9 Normal
- EUS: ampullary mass, no deep invasion
- Biopsies: Carcinoid
Ampullary Neoplasms

Familial Polyposis
- Disease prevalence: 1/5000 to 1/7500
- 50% to 80% will have adenomatous change of the papilla
- 4% to 12% lifetime incidence of duodenal cancer

Sporadic
- Prevalence: 0.04% to 0.12% in autopsy series
- Patients are usually > 40 years old (usually in 70s)

Presentation
- No symptoms
- Obstructive jaundice
 - 50% to 75% of symptomatic patients
 - Usually either painless or with a dull midepigastric ache
 - Up to 25% will have associated CBD stones due to cholestasis
- Abdominal pain
- Pancreatitis
- Bleeding and/or anemia
Staging

- Accurate staging is important to determine the appropriate intervention
- Methods:
 - U/S
 - CT
 - ERCP
 - EUS
 - IDUS

Treatment Options

- Endoscopic ampullectomy
- Surgery
 - Wide local excision
 - Pylorus-preserving resection of pancreatic head
 - Whipple
Surgical management

- Carcinoma
- Extension into CBD/PD
- Indeterminate staging
- Large >2 cm ??
- HGD: young, good health

Complications of Endoscopic Ampullectomy

- Pancreatitis: 8 to 15% (typically mild)
- Bleeding: 4 to 6%
- Perforation: 4%
- Stenosis:

Endoscopic surveillance

- Tubular histology
 - 2 to 3 years
- Unfavorable histology: Villous, HGD
 - 1 year
Critical Influences on ERCP

- Technology
 - Accessory development - e.g. guidewires, multilumen catheters, dilating balloons
 - “smart” cautery – e.g. ERBE
 - Smaller therapeutic scopes
 - Stent technology - plastic, SEMS

Critical Influences on ERCP

- Technology
 - Laparoscopic surgery
 - EUS
 - MRCP
 - High resolution CT

Case

- 55 y/o woman presents with 3 day h/o worsening abdominal pain and abdominal distention. Lap Chole 4 days ago.
- LFT’s mildly elevated
- Diagnosis:
- Next step???
Case

• 55 y/o woman presents with 3 day h/o worsening abdominal pain and abdominal distention.
• LFT’s mildly elevated
• Diagnosis:
• CT: fluid in GB fossa and around the liver

Case: 2

Critical Influences on ERCP

♦ Complications
 – Adverse outcomes-e.g. bleeding, perforation, pancreatitis
 – Cost/Resource utilization
 – Looming clouds of litigation
Tissue Acquisition

- Future directions/technologies
 - Expanded use of EUS/FNA
 - SPYGLASS biopsies
 - Pilot Balloon Cholangioscopy
 - IDUS probes
 - Tissue analysis-e.g. flow cytometry, molecular genetics, genotyping, FISH

Case

A 24 y/o woman presents with c/o severe 10/10 RUQ abdominal pain. She has 1 year hx of similar attacks of pain lasting few hours. Lap chole 14 months ago. Has seen her PCP on several occasions with same complaint, a KUB, CT scan and routine labs have been normal. On percocet for pain. Examination is unremarkable except slight voluntary guarding in RUQ.

Case

- Bouts of severe RUQ pain
- Labs normal
- CT normal
Case

- Bouts of severe RUQ pain
- Labs normal
- CT normal
- Treated as IBS
- ERCP: Slightly generous bile duct, manometry: high basal pressure 70 mmHg
- Sphincterotomy provided pain relief

18 months later, doing well
Biliary Dyskinesia or Sphincter of Oddi Dysfunction

- Approx 750,000 lap cholecystectomies performed every year
- 15 to 30% have recurrent or persistent pain
- Majority have biliary dyskinesia (or sphincter of oddi dysfunction)

Sphincter of Oddi Dysfunction

Two groups

- **Biliary group**: RUQ pain/epigastric, 1-2 hrs after food, abn LFTs, dilated ducts
- **Pancreatic group**: epigastric pain, radiating to back, alleviation on stooping, raised amylase levels

Sphincter of Oddi Dysfunction

* Biliary group classification:
 - **Type 1**: biliary-type pain
 - abn LFT >2N on at least 2 occasions
 - CBD dilated >12mm
 - delayed drainage of CBD >45min
 - **Type 2**: biliary-type pain and one or two of above criteria
 - **Type 3**: biliary-type pain only
Sphincter of Oddi Dysfunction

Pancreatic group classification:

<table>
<thead>
<tr>
<th>Type</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>unexplained acute recurrent pancreatitis, amylase $>2N \times 2$, smooth dil of PD with no side-branch clubbing, delayed drainage of contrast >9 min</td>
</tr>
<tr>
<td>Type 2</td>
<td>unexplained acute recurrent pancreatitis, amylase $>2N \times 2$, normal PD and drainage</td>
</tr>
<tr>
<td>Type 3</td>
<td>pancreatic type pain only</td>
</tr>
</tbody>
</table>

Type “IV” SOD

- Chronic un-remitting pain
- Depressed
- Symptoms of Gastroparesis
- All potentially causative organs excised

Type “IV” SOD

- Failed all prior therapies
- Taking anti-depressants
- Taking long acting Narcotics
Type “IV” SOD

• Normal physical exam
• Normal lab values
• Normal imaging studies
• Difficult to manage!!

Sphincter of Oddi Dysfunction (SOD)

The typical patient with SOD
• female, 20-50 years old
• s/p cholecystectomy
• symptoms similar to pre-cholecystectomy
• episodic (or constant) pain

Sphincter of Oddi Dysfunction

Clinical evaluation:
• History and Physical
• CXR, EKG
• Abdo U/S, LFTs, Amylase/Lipase
• EGD
• CAT scan
• Secretin EUS or Secretin MRCP.
• HIDA
• ERCP with Manometry
Sphincter of Oddi Manometry (SOM)

Requirements for successful SOM
• skillful endoscopist and nurses
Sphincter of Oddi Manometry

Abnormal values
- Basal sphincter pressure > 40mmHg
- Phasic contractions
 - amplitude >220mmHg
 - duration > 8 sec
 - frequency > 10/min
 - retrograde > 50%

Increased basal sphincter pressure is the most reproducible and predictive of positive therapeutic outcomes

Results of ES

<table>
<thead>
<tr>
<th>Basal SOP mmHg</th>
<th>Group</th>
<th>Pain relief at 1 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30mmHg</td>
<td>ES(11)</td>
<td>91%</td>
</tr>
<tr>
<td></td>
<td>sham(12)</td>
<td>24%</td>
</tr>
<tr>
<td><30mmHg</td>
<td>ES(12)</td>
<td>42%</td>
</tr>
<tr>
<td></td>
<td>sham(12)</td>
<td>33%</td>
</tr>
</tbody>
</table>

Geenen et al. Gastro 1987;92:1401
Predictors of post-ERCP Pancreatitis by Multivariate Analysis

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Female + Normal Bilirubin</th>
<th>Female + Normal Bilirubin + SOD</th>
<th>Female + Normal Bilirubin + Difficult Cannulation</th>
<th>Female + Normal Bilirubin + SOD + Difficult Cannulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatitis (%)</td>
<td>2.5</td>
<td>4.8</td>
<td>12.4</td>
<td>16.2</td>
<td>42.1</td>
</tr>
</tbody>
</table>

Pancreatic Stents in SOD

- 80 patients with pancreatic sphincter hypertension, biliary ES for SOD
- Randomized to short-term PD stent or no stent after biliary ES

Sphincter of Oddi Dysfunction: Conclusions

- SOD is a common cause of upper abdominal pain after lap chole
- ERCP with manometry is the gold standard for diagnosis
- Endoscopic sphincterotomy is the treatment of choice
- Medical therapy of limited value
Sphincter of Oddi Dysfunction: Conclusions

- SOD manometry is technically difficult and hazardous procedure
- Success rate still 50 to 85%
- Properly trained and skilled endoscopist and nurses required

ERCP: Complications

- Pancreatitis
- Bleeding
- Perforation
- Infection

Can ≠ Should

Richard Kozarek, M.D.
Major Complications of ERCP
(Consensus Definitions)

<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatitis</td>
<td>Amylase at least 3 times normal at more than 24 hours after procedure, requiring admission for 2-5 days</td>
<td>Pancreatitis requiring hospitalization of 4-10 days</td>
<td>Hospitalization for more than 10 days, pseudocyst, or intervention</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>Clinical evidence of bleeding, hemoglobin drop <5 g, no transfusion</td>
<td>Transfusion (4 units or less), no angiographic intervention or surgery</td>
<td>Transfusion 4 units or more, or intervention (angiographic or surgical)</td>
</tr>
<tr>
<td>Perforation</td>
<td>Possible, or only very slight leak of fluid or contrast</td>
<td>Any definite perforation treated medically 4-10 days</td>
<td>Medical treatment for more than 10 d, or intervention (percutaneous or surgical)</td>
</tr>
<tr>
<td>Infection</td>
<td>>38°C for 24-48 hours</td>
<td>Febrile or septic illness requiring >3 days of hospital treatment or a percutaneous intervention</td>
<td>Sepsic shock or surgery</td>
</tr>
</tbody>
</table>

Risk Factors for Complications of ERCP
(in Multivariate Analyses)

<table>
<thead>
<tr>
<th></th>
<th>Definitive</th>
<th>Maybe</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspected sphincter of Oddi dysfunction</td>
<td>Young age</td>
<td>Comorbid illness burden</td>
<td></td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>Pancreatic contrast injection</td>
<td>Small common bile duct diameter</td>
<td></td>
</tr>
<tr>
<td>Difficult cannulation</td>
<td>Failed biliary drainage</td>
<td>Female gender?</td>
<td></td>
</tr>
<tr>
<td>Percutaneous biliary access</td>
<td>Bilroth II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower ERCP case volume</td>
<td>Periampullary diverticulum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Freeman ML. Adverse outcomes of ERCP. Gastrointestinal Endoscopy, December 2002-Part 2-Volume 56-Number 6

Pancreatitis

Risk Factors
Risk-Reduction Strategies
Risk Factors for Post-ERCP Pancreatitis

<table>
<thead>
<tr>
<th>Definite</th>
<th>Maybe</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspected sphincter of Oddi dysfunction</td>
<td>Female Gender</td>
<td>Small Common Bile Duct diameter</td>
</tr>
<tr>
<td>Young Age</td>
<td>Acinarization</td>
<td>Sphincter of Oddi manometry</td>
</tr>
<tr>
<td>Normal bilirubin</td>
<td>Absence of common bile duct stone</td>
<td>Biliary Sphincterotomy</td>
</tr>
<tr>
<td>History of post-ERCP pancreatitis</td>
<td>Lower ERCP case volume</td>
<td></td>
</tr>
<tr>
<td>Pancreatic duct injection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic sphincterotomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-cut sphincterotomy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balloon dilation of biliary sphincter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk Factors for Procedure-Induced Pancreatitis

Several factors may act independently or in combination to induce post-ERCP pancreatitis:

- Mechanical Injury
- Chemical or Allergic Injury
- Hydrostatic Injury
- Infection
- Enzymatic Injury
- Pancreatic Ductal Edema or Perforation
- Thermal Injury

Pancreatitis Risk-Reduction Strategies

Strategies are broken out into two groups*:

1. Patient Selection
2. Procedural Technique

*Listed in no particular order
Patient Selection
Risk Reduction Strategy

Special caution should be exercised when considering a patient with a demonstrated “reactive” pancreas when considering or performing ERCP. These patients include:

- Younger patients
- Female gender
- Recurrent abdominal pain in the absence of proven anatomic biliary obstruction
- History of recurrent or post-ERCP pancreatitis
- Patients with multiple risk factors

ERCP is most dangerous for people who need it least.

-Peter Cotton, M.D. Gastrointestinal Endoscopy 2001;54(4) 535-536.

Procedural Technique
(Pancreatic Stent)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Benefit</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biliary Sphincterotomy for SOD</td>
<td>Yes</td>
<td>RCT</td>
</tr>
<tr>
<td>Pancreatic sphincterotomy for SOD</td>
<td>Yes</td>
<td>RCT (abstract)</td>
</tr>
<tr>
<td>Biliary balloon dilation for stone</td>
<td>Yes</td>
<td>RCT</td>
</tr>
<tr>
<td>Pre-cut biliary sphincterotomy</td>
<td>Yes</td>
<td>RCT (abstract)</td>
</tr>
<tr>
<td>High risk, including difficult cannulation</td>
<td>Equivocal</td>
<td>RCT</td>
</tr>
</tbody>
</table>

SOD, sphincter of Oddi dysfunction

RCT, Random Controlled Trial
Procedural Technique (Pancreatic Stent)

- Before pre-cut (access) papillotomy
- Before or after biliary sphincterotomy for SOD
- Pancreatic sphincterotomy
- Endoscopic papillotomy
- After manometry or pancreatic instrumentation for suspected SOD
- Balloon dilation of the intact biliary sphincter
- Pancreatic brush cytology
- After a difficult cannulation
- Repeated pancreatic duct injections of contrast in patients with other risk factors.

Procedural Technique (Guidewire Cannulation)

A recent study tested the hypothesis that post ERCP pancreatitis can be avoided by initially accessing the bile duct with a soft-tipped Teflon® coated tracer 0.035-inch guidewire.

- 2 year study
- 400 Patients (182 M / 218 F)
- Mean age: 61.2 years (Range: 22-94)
- Participants broken into 2 groups:
 - Group A – Guidewire Cannulation Used to Access Duct
 - Group B – Traditional Access Method Used
- No case of acute pancreatitis was detected in group A, whereas, 8 cases were observed in group B (6 mild, 1 moderate, 1 severe)

* Teflon is a trademark of E.I. DuPont de Nemours and Company

Post-ERCP Pancreatitis

![Post-ERCP Pancreatitis Chart]

Diagnostic n=353 Therapeutic n=1513
Pancreatic Stents in SOD

- 80 patients with pancreatic sphincter hypertrophy, biliary ES for SOD
- Randomized to short-term PD stent or no stent after biliary ES

Post-ERCP Pancreatitis: Insights from clinical Studies

- Patient-related factors are major determinants of risk
- Cannulation difficulty is important, but less than generally thought
- Pancreatic stents reduce risk in selected circumstances

Pancreatic Stents in SOD

Post-ERCP Pancreatitis Rates

<table>
<thead>
<tr>
<th>Stent</th>
<th>N</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>3F</td>
<td>1451</td>
<td>85 (6%)</td>
<td>18 (1.3%)</td>
<td>4 (0.2%)</td>
<td>107 (7.5%)</td>
</tr>
<tr>
<td>4F</td>
<td>996</td>
<td>80 (8%)</td>
<td>20 (2%)</td>
<td>6 (0.6%)</td>
<td>106 (10.6%)</td>
</tr>
<tr>
<td>5F</td>
<td>377</td>
<td>28 (7.4%)</td>
<td>6 (1.6%)</td>
<td>3 (0.8%)</td>
<td>37 (9.8%)</td>
</tr>
<tr>
<td>6F</td>
<td>116</td>
<td>14 (12%)</td>
<td>2 (1.8%)</td>
<td>1 (0.0%)</td>
<td>17 (14.6%)</td>
</tr>
</tbody>
</table>
Spontaneous Pancreatic Polyethylene Stents Dislodgment

![Bar chart showing spontaneous dislodgment rate by stent diameter.]

Polyethylene Stent-Induced Pancreatic Ductal Changes

![Bar chart showing frequency of stent-induced ductal changes by stent diameter.]

Post ERCP pancreatitis: Indomethacin suppository
Summary: Risk Reduction for Post-ERCP Pancreatitis

- Careful patient selections
- Meticulous endoscopic technique
- Insertion of a pancreatic stent in selected patients
- Endoscopist who maintains ERCP procedural volume
- Well trained (high volume) nurses/techs

Hemorrhage

Risk Factors
Risk Reduction Strategies
Hemorrhage

- Bleeding may occur primarily after sphincterotomy
- Presentation may be delayed up to 10 days after sphincterotomy
- Bleeding can usually be managed by endoscopic therapy, with surgery very seldom required.

Freeman ML. Toward improving outcomes of ERCP. Gastrointestinal Endoscopy, July 1998- Volume 48-Number 1

Freeman ML. Adverse outcomes of ERCP. Gastrointestinal Endoscopy, December 2002-Part 2-Volume 56-Number 6

Risk Factors for Hemorrhage after Endoscopic Sphincterotomy

<table>
<thead>
<tr>
<th>Factor</th>
<th>Definite</th>
<th>Maybe</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulopathy</td>
<td></td>
<td></td>
<td>ASA or NSAID use</td>
</tr>
<tr>
<td>Anticoagulation <3 d after ES</td>
<td></td>
<td>Cirrhosis</td>
<td></td>
</tr>
<tr>
<td>Cholangitis before ERCP</td>
<td></td>
<td>Dilated common bile duct</td>
<td>Ampullary tumor</td>
</tr>
<tr>
<td>Bleeding during ES</td>
<td></td>
<td>Common bile duct stone</td>
<td>Longer sphincterotomy</td>
</tr>
<tr>
<td>Lower ERCP case volume</td>
<td></td>
<td>Periampullary diverticulum</td>
<td>Extension of prior ES</td>
</tr>
<tr>
<td>Pre-cut sphincterotomy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Freeman ML. Adverse outcomes of ERCP. Gastrointestinal Endoscopy, December 2002-Part 2-Volume 56-Number 6

Reducing the Risk of Hemorrhage

- Correction of any coagulopathies
- Withholding anticoagulant medications
- Prophylactic injection of the sphincterotomy site with epinephrine
- Prophylactic injection of the sphincterotomy site with a sclerosing agent
- Balloon tamponade
- Clipping of clearly defined vessel for hemostasis

Freeman ML. Adverse outcomes of endoscopic retrograde cholangiopancreatography: avoidance and management. Gastrointestinal Endoscopy clinics of North America – Volume 13 Issue 4, Pages 775-798 October 2003
Perforation
• Perforation is now reported in less than 1% of ERCPs and sphincterotomies.
• Perforation may be retroperitoneal because of extension of a sphincterotomy incision beyond the intramural portion of the bile or pancreatic duct.
• Perforation may be intraperitoneal as a result of perforation of the bowel wall by the endoscope, or occur at any location because of extramural passage or migration of guide wires or stents.

Risk Factors for Perforation
• Literature states that perforation after sphincterotomy is more common in patients with:
 - Suspected sphincter of Oddi dysfunction
 - Needle-knife pre-cut techniques
 - Billroth II anatomy

Reducing the Risk of Perforation
• Limit the length of cutting wire in contact with the tissue.
• Use of stepwise incisions.
• Reassessing the amount of remaining papillary mound during the incision.
• Using special caution with needle-knife papillotomy.
Infection (Cholangitis and Cholecystitis)

Risk Factors
Risk Reduction Strategies

Risk Factors for Cholangitis and Cholecystitis

- Failed or incomplete biliary drainage
- Use of combined percutaneous-endoscopic procedure
- Jaundice especially if caused by malignancy
- Prior cholangitis
- Operator inexperience

Freeman ML. Adverse outcomes of endoscopic retrograde cholangiopancreatography: avoidance and management. Gastrointestinal Endoscopy clinics of North America – Volume 13 Issue 4, Pages 775-798 October 2003
Reducing the Risk of Cholangitis and Cholecystitis

• The principle recommendation regarding prevention and treatment of cholangitis is obtaining successful and complete biliary drainage.

Summary

Complications of ERCP

• Major complications of ERCP are:
 – Pancreatitis, Hemorrhage, Perforation and Infection
• Risk factors related to ERCP are:
 – Pre-procedural (related to patient selection)
 – Technique-related; operator inexperience
• Complications may be reduced if risk-reduction strategies are understood and employed

Case

• A 46 y/o Asian lady from Juneau, with 5 week h/o severe attacks of abdominal pain and vomiting
• Pain severe, 10/10 during episode, vague constant discomfort in between episodes
• Examination reveal mild abdominal tenderness
• CT/USS scan unremarkable
• Treated by GI as SOD, with analgesics, nifedipine and reassurance
Case

• During a pain episode:
 – Amylase 1200, Lipase 2000,
 – Bili 2.2, Alk Phos 218
• GI spoke to me and sent the pt to Seattle
• Next step: EUS? ERCP? MRCP?

Case: SOD ?

Future Directions/Ideas

- Drug-eluting stents
- Functional miniprobes
- PDT
- New lasers
- Biodegradable stents
- Hybrid scopes-EGD, EUS, ERCP
- Secretin MRCP
- NOTES

NOTES
The sole purpose of human existence is to kindle a light in the darkness of mere being

C G Jung